Boundary Layer Fluid Flow in a Channel with Heat Source, Soret Effects and Slip Condition

نویسندگان

  • I. J. Uwanta
  • B. Y. Isah
چکیده

The boundary layer fluid flow in a channel with heat source, soret effects and slip condition was studied. The governing equations were solved using perturbation technique. The effects of different parameters such Prandtl number Pr , Hartmann number M, Schmidt number Sc, suction parameter  , soret number Sr and the heat source s on velocity, temperature and concentration were studied. Numerical computations involved in the solution have been shown on graphs and tables. It was observed that the temperature increased with an increase in perturbation parameter, heat source, and suction, but temperature decrease with increase in Prandtl numbers. The concentration profile increased with an increasing suction, soret, and perturbation parameter and decreases with an increasing Schmidt and heat source parameters, while the velocity increased with increase in Hartmann number, perturbation parameter, suction, Grashof and modified Grashof numbers, and slip variable and decreased as a result of an increasing Schmidt, Prandtl and soret numbers. The skin friction coefficient, Nusselt number and Sherwood number were also depicted on tables. The skin friction coefficient increased with the increase in material parameters , , , , ,and  Pr Sc Sr Gc mt and decreased with increase of material parameters , , ,and s Gr M . Increasing effects of , Pr decreased the Nusselt number while increasing , and  s mt increased the Nusselt number with appreciative results. Sherwood number increased with the increased of material parameter Pr and inversely decreases with increase in , , , and  s Sc Sr mt .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micropolar Fluid Flow Induced due to a Stretching Sheet with Heat Source/Sink and Surface Heat Flux Boundary Condition Effects

Computational and mathematical models provide an important compliment to experimental studies in the development of solar energy engineering in case of electro-conductive magnetic micropolar polymers. Inspired by further understanding the complex fluid dynamics of these processes, we examine herein the non-linear steady, hydromagnetic micropolar flow with radiation and heat source/sink effects ...

متن کامل

Flow Over an Exponentially Stretching Porous Sheet with Cross-diffusion Effects and Convective Thermal Conditions

This article investigates the influence of cross-diffusion on the viscous fluid flow over a porous sheet stretching exponentially by applying the convective thermal conditions. Velocity slip at the boundary is considered. The numerical solutions to the governing equations are evaluated using successive linearisation procedure and Chebyshev collocation method. It is observed from this study that...

متن کامل

Slip flow of an optically thin radiating non-Gray couple stress fluid past a stretching sheet

This paper addresses the combined effects of couple stresses, thermal radiation, viscous dissipation and slip condition on a free convective flow of a couple stress fluid induced by a vertical stretching sheet. The Cogley- Vincenti-Gilles equilibrium model is employed to include the effects of thermal radiation in the study. The governing boundary layer equations are transformed into a system o...

متن کامل

Effects of Thermal Diffusion and Radiation on Magnetohydrodynamic (MHD) Chemically Reacting Fluid Flow Past a Vertical Plate in a Slip Flow Regime

An analysis has been conceded to study the effects of Soret and thermal radiation effects on the magnetohydrodynamic convective flow of a viscous, incompressible, electrically conducting fluid with heat and mass transfer over a plate with time-dependent suction velocity in a slip flow regime in the presence of first-order chemical reaction. The slip conditions at the boundaries for the governin...

متن کامل

Dufour and Soret Effects on Unsteady Heat and Mass Transfer for Powell-Eyring Fluid Flow over an Expanding Permeable Sheet

In the present analysis, the Dufour and Soret effects on unsteady heat-mass transfer of a viscous incompressible Powell-Eyring fluids flow past an expanding/shrinking permeable sheet are reported. The fluid boundary layer develops over the variable sheet with suction/injection to the non-uniform free stream velocity. Under the symmetry group of transformations, the governing equations along wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013